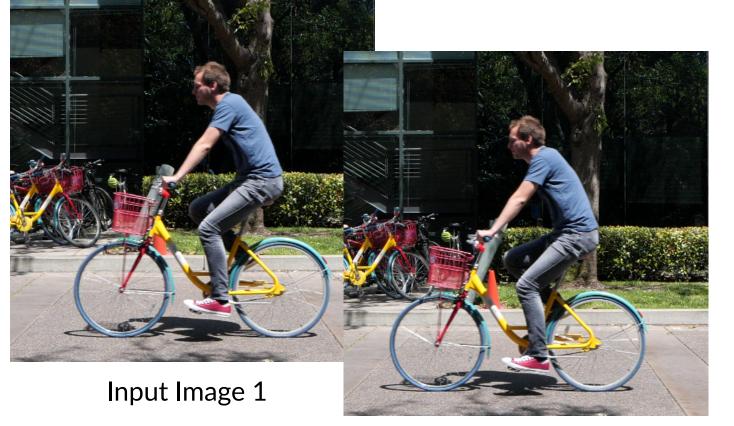
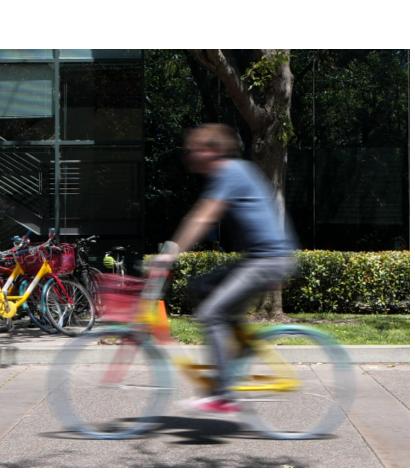


Problem

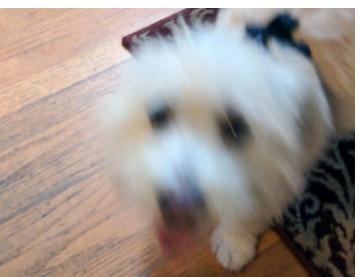
Synthesize a motion blurred image from two sharp images.





Applications

Photography, timelapse, rendering, cinematography, synthesizing deblur training data.



Unwanted Motion Blur



skilled photographers, animators and filmmakers use purposeful motion blur to convey motion.

Contributions

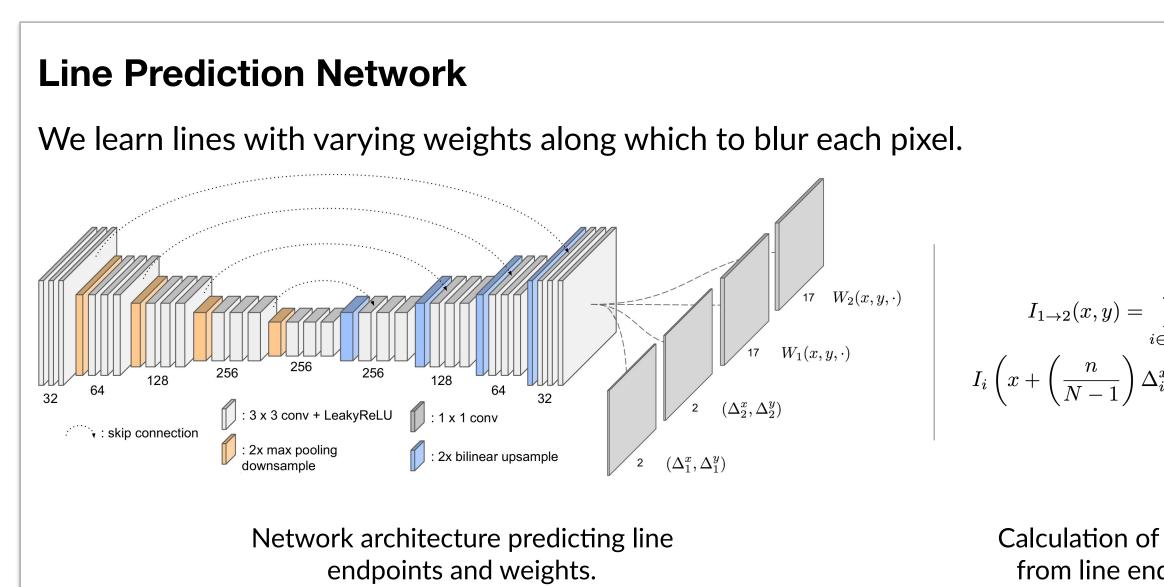
1) Novel line prediction network with state-of-the-art motion blur performance:

 \diamond 4dB higher quality than optical flow.

 \diamond 2,500x faster than frame interpolation.

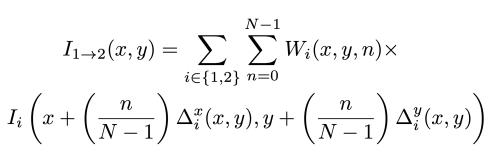
2) Procedure for generating massive amounts of motion blur training data.

3) Small ground-truth motion blur dataset for evaluation.



Learning to Synthesize Motion Blur Tim Brooks & Jon Barron

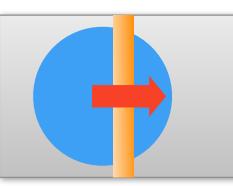
Output Image



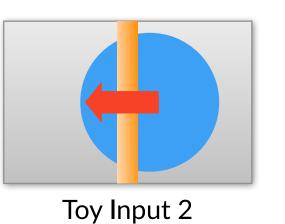
Calculation of motion blurred image from line endpoints and weights.

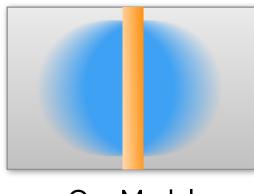
Handling Complex Motions

Our line prediction network is better able to handle complex motions than previous methods.



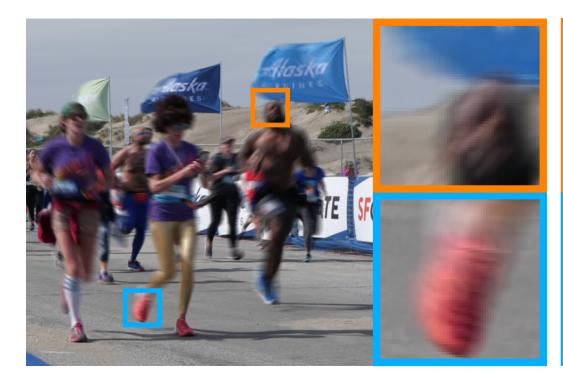
Toy Input 1





Input Frames

Our Model



Our Model

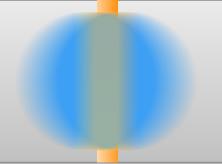
Training Data Generation

We recursively interpolate video frames and average to produce motion blur pseudo-ground truth.

Frame 2

Average of Frames

1x Frame Interpolation



Optical Flow

PWC-Net [4]

Optical Flow (PWC-Net) [4]

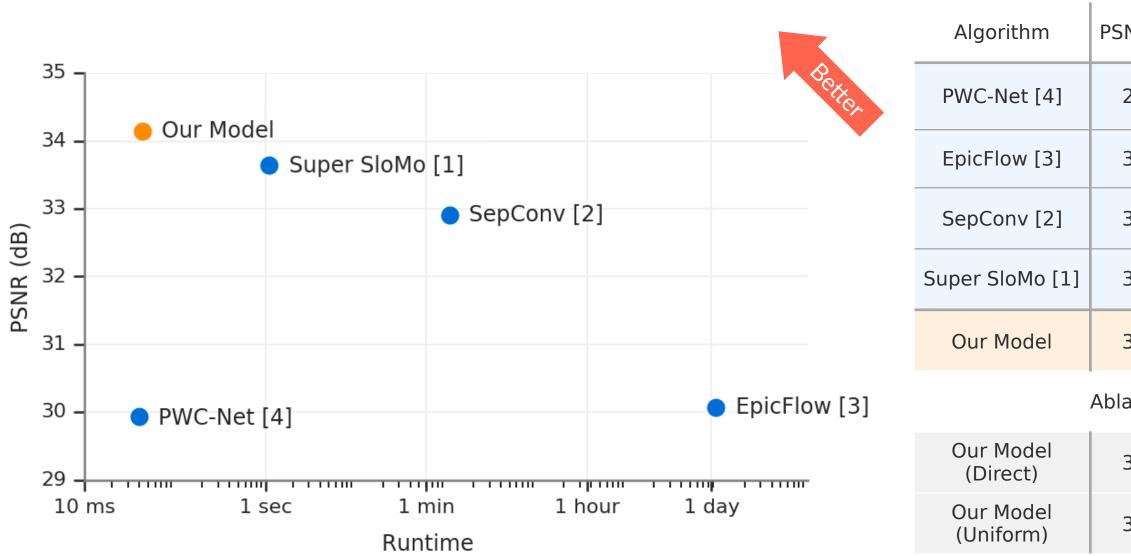
Average

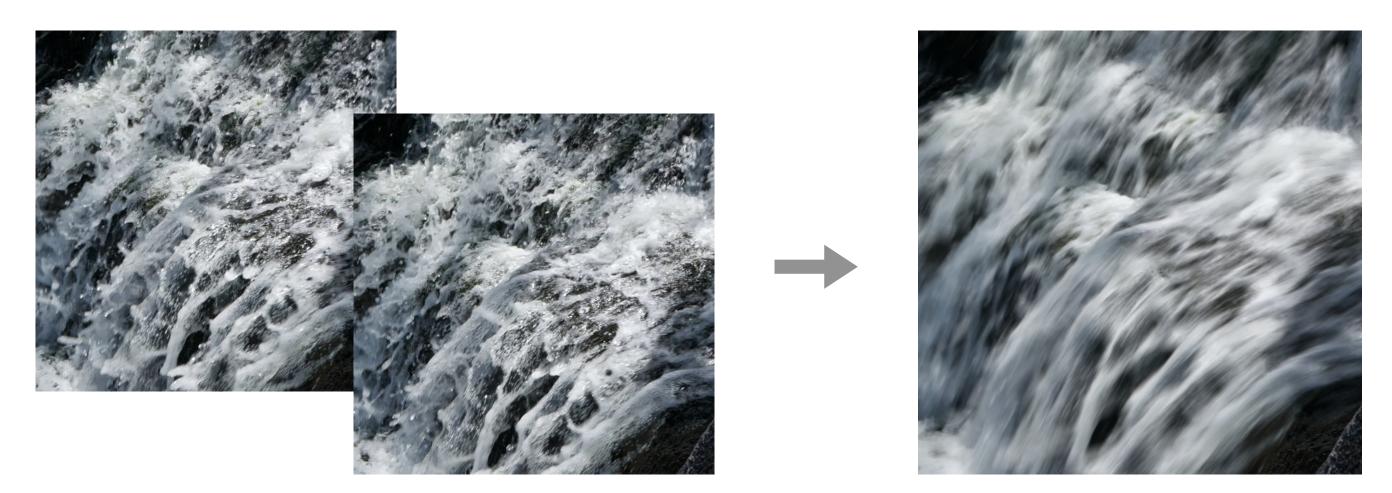
2x Frame Interpolation

4x Frame Interpolation

Results

Performance on our evaluation dataset captured using real slow motion videos.



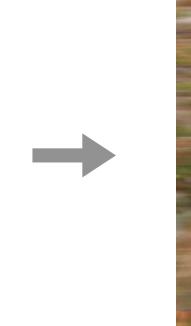


Example Input Images

Supplemental material and more information available:

timothybrooks.com/tech/motion-blur

Algorithm	PSNR (dB)	Runtime (ms)
PWC-Net [4]	29.93	39.5
EpicFlow [3]	30.07	96.3 x 10 ⁶
SepConv [2]	32.91	10.9×10^4
Super SloMo [1]	33.64	13.7×10^{2}
Our Model	34.14	43.7
Ablations		
Our Model (Direct)	33.97	34.7
Our Model (Uniform)	33.88	42.8



Example Output Images

Bibliography

[1] Jiang et al., Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation, CVPR 2018 [2] Niklaus et al., Video Frame Interpolation via Adaptive Separable Convolution, ICCV 2017 [3] Revaud et al., EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow, CVPR 2015 [4] Sun et. al, PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018